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Abstract

The Conjugate Gradient (CG) method is renowned for its rapid convergence in optimization
applications. Over the years, several modifications to CG methods have emerged to improve
computational efficiency and tackle practical challenges. This paper presents a new three-term
hybrid CG method for solving unconstrained optimization problems. This algorithm utilizes a
search direction that combines Liu-Storey (LS) andConjugate Descent (CD)CG coefficients and
standardizes it using a spectral which acts as a scheme for the choices of the conjugate parame-
ters. This resultant direction closely approximates the memoryless Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton direction, known for its bounded nature and compliance with
the sufficient descent condition. The paper establishes the global convergence under standard
Wolfe conditions and some appropriate assumptions. Additionally, the numerical experiments
were conducted to emphasize the robustness and superior efficiency of this hybrid algorithm in
comparison to existing approaches.
Keywords: unconstrained optimization; three-term conjugate gradient; memoryless quasi-Newton

method; line search; global convergence.
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1 Introduction

Consider the large-scale unconstrained optimization problem,

min
x∈Rn

f(x). (1)

The function f : Rn → R is continuously differentiable and its gradient gk := ∇f(xk) exhibits Lip-
schitz continuity. The Newton, quasi-Newtonmethod, and their respective alternatives have been
proposed as viable ways for tackling unconstrained optimization problems [16]. However, these
approaches are not considered optimal for addressing large-scale problems due to the require-
ment of computing and storing the Hessian matrix throughout each iteration. The singularity of
the Hessian matrix occurs when the aforementioned approaches are unsuccessful. Consequently,
the development of the Conjugate Gradient (CG) method was motivated by the need to address
these challenges, given its advantages in terms of simplicity of implementation, Hessian-free ap-
proach, and minimal storage requirements [22].

The conjugate gradient approach utilises an iterative algorithm to solve equation (1) and gen-
erate a sequence {xk} in the following manner,

xk+1 = xk + sk, sk = αkdk, k = 0, 1, 2, . . . , (2)

where αk is the positive step length and the search direction dk is given by,

dk =

{
−gk, if k = 0,

−gk + βkdk−1, if k > 0.
(3)

The step length αk is determined by evaluating the appropriate line search. The step length fulfills
the standard Wolfe line search, whenever

f(xk + αkdk)− f(xk) ≤ ηαkg
T
k dk, (4)

g(xk + αkdk)
T dk ≥ ρgTk dk, (5)

where 0 < η < ρ < 1. Sufficient descent condition is one the important conditions for global
convergence of CGmethds that can facilitate the convergence structure. The search direction gen-
erated by the algorithm satisfies the sufficient descent condition, where there exists a c > 0 such
that

gTk dk ≤ −c∥gk∥2, c > 0. (6)

Meanwhile, βk represents the conjugate gradient parameter which plays a crucial role in shaping
the overall convergence criteria and numerical efficiency of different conjugate gradient meth-
ods. The most well-known conjugate gradient methods include Hestenes-Stiefel (HS) [23], Polak-
Ribiere-Polyak (PRP) [34, 35], Liu-Storey (LS) [30], Dai-Yuan (DY) [14], Fletcher-Reeves (FR)
[20], and Conjugate Descent (CD) [21]. These methods are described as follows:

βHS
k =

gTk yk−1

dTk−1yk−1
, βPRP

k =
gTk yk−1

∥gk−1∥2
, βLS

k =
gTk yk−1

−gTk−1dk−1
. (7)

βDY
k =

∥gk∥2

dTk−1yk−1
, βFR

k =
∥gk∥2

∥gk−1∥2
, βCD

k =
∥gk∥2

−gTk−1dk−1
(8)

respectively, where yk−1 = gk − gk−1 and ∥.∥ denotes the Euclidean norm in Rn .
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According to Babaie-Kafaki and Ghanbari [11], the schemes employing a common numerator
gTk yk−1 tend to exhibit superior practical performance. However, Andrei [3, 4] stated that these
schemes may not consistently converge due to interference and exhibit contrasting characteristics
when compared to schemes employing a common numerator ∥gk∥2. Babaie-Kafaki andMahdavi-
Amiri [12] stated that in pursuit of enhancing the efficacy of these strategies and avoid poten-
tial jamming, researchers expressed a keen interest in combining the schemes from both groups.
From a theoretical standpoint, Hager and Zhang [22] assert that global convergence theorems for
schemes using a common numerator ∥gk∥2 only necessitate the Lipchitz assumption, unlike other
choices of update parameters, which require boundedness assumptions. Powell [36] also high-
lighted that jamming is the primary factor contributing to the bad practical performance of the
FR method. Babaie-Kafaki [10] stated that when a poor direction and a small step are generated
between xk and xk−1, subsequently direction dk and step length αk are likely to be poor as well,
unless a gradient restart is employed. Nevertheless, schemes using a common numerator exhibit
an inherent approximate restart feature that addresses the issue of jamming, Babaie-Kafaki [9].
Based on Andrei [5, 6], the newly computed search direction dk closely aligns with the steepest
descent direction −gk when a small value of βk is generated due to the small step sk−1, in which
the gradient difference yk−1 in the numerator approaches zero.

The CD method exhibits a close relation to FR scheme when employing an exact line search.
One important difference between FR and CDmethods is that the sufficient descent for CD holds
for a strong Wolfe condition in which the constraints c > 1/2 for FR but unnecessary for CD.
Hager andZhang [22] emphasized that the CDmethod is globally convergent for a line search that
satisfies the generalized Wolfe conditions with η < 1 and ρ = 0. Djordjevic [17] mentioned that
there is limited research concerning the choice of βLS

k , except thework conducted by Liu and Storey
[30]. Nevertheless, it is anticipated that the analytical techniques developed for the PRP method
can be effectively applied to the LSmethod, Hager andZhang [22]. Similarly, Dai [13] showed that
for an exact line search, the LS scheme is also identical to PRP. Following that, there aremanyworks
has been done regarding the hybridization of LS and CD method. Yang [41] introduced to the
hybrid CG method known as LSCD under Wolfe line search, they proved the global convergence
of the method. Again Djordjevic [17] proposed a new hybrid CG parameter that computed as
convex combination of βLS

k and βCD
k in which satisfied both conjugacy condition and strong Wolfe

line search conditions. Recently, Sahilu [37] also used the idea of convex combination proposed
by Djordjevic [17] and hybridized by using Secant Equation which given as follows,

βCLCS
k = (1− θk)β

LS
k + θkβ

CD
k .

where θk is the hybridization scalar parameter satisfying θk ∈ [0, 1]. It is obvious that βCLCS
k = βLS

k

as if θk = 0, and βCLCS
k = βCD

k as if θk = 1. However, βCLCS
k is a proper convex combination of βLS

k

and βCD
k as if 0 < θk < 1. The hybrid computational able to yield such outperform or comparable

results with known conjugate gradient algorithms.

Wang [39] introduced a spectral method that offers an optimal step length strategy within the
gradient method. This approach serves as a novel way of determining the conjugate parameters
and the newly computed search direction satisfies both the sufficient descent and spectral con-
ditions. Global convergence under certain appropriate assumptions is subsequently established.
The spectral parameter θk is defined as follows

θk = max{min{α∗
k, ρ̄k}, ρk}, (9)

where α∗
k = −

sTk−1gk−1

ς ∥yk−1∥2ρk
, ρ̄k =

∥sk−1∥2

sTk−1yk−1
, ρk =

sTk−1yk−1

∥yk−1∥2
and ς is positive value.

Inspired by the idea of determining the suitable choice for the conjugate parameters intro-
duced by Wang [39] and the problems discussed by Andrei [3, 4], Babaie-Kafaki [11] and other
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works into consideration in addressing issues of convergence and jamming. The key motivation
of this paper is to prevent jamming by considering a combination of norms of ∥gk∥2, ∥sk−1∥2,
and ∥yk−1∥2. This modification computes the maximum of these norms which acting as a new
alternative parameter that dynamically adjusts the CG update. Equation (16) introduces a crucial
decision point in the CG update process. It hinges on the value of ωk calculated in Equation (15).
If ωk equals ∥yk−1∥2, the update direction becomes yk−1, otherwise, it remains gk. This decision is
essential in avoiding jamming and maintaining convergence during the iterations. The rationale
behind these equations is to combine the strengths of different CG schemes and adapt the update
parameters dynamically to address jamming issues. By assessing the norms and switching be-
tween update directions based on the value of ωk, these equations enhance the performance of
CG methods as discussed by various authors in the provided literature.

In enhancing the traditional two-term direction previously discussed, researchers have de-
veloped hybrid and three-term CG methods aimed at improving their computational efficiency.
One approach, proposed by Andrei [7] involving alteration of the inverse Hessian approximation
within the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula while ensuring that the search
direction adheres to the principles of descent and conjugacy. Another innovative method, in-
troduced by Liu and Li [29], is a hybrid CG method that combines features of the LS and DY
methods through a convex combination. This approach results in a search direction that satisfies
both the Dai-Liao (DL) conjugacy condition and the Newton direction, with the added advantage
of achieving global convergence through strong Wolfe line search. Xu and Kong [40] presented
two hybrid algorithms that combine the PRP method with FR and the HS method with DY, re-
spectively. Both of these hybrid methods yield descent directions and achieve global convergence
through Wolfe line search. Dong [19] have devised a modified HS method that not only adheres
to the descent criterion but also closely approximates the Newton method. The incorporation of
the conjugacy condition aids in determining the hybridization parameter, ultimately resulting in
the establishment of global convergence for general functions based on specific assumptions. Min
Li [27] has suggested a three-term PRP CG method that closely resembles the memoryless BFGS
quasi-Newton method. This method reverts to the classical PRP approach when exact line search
conditions are met and the descent criterion is satisfied irrespective of line search considerations.
Adequate line search strategies contribute to its global convergence and numerical results indicate
its effectiveness in solving unconstrained optimization problems.

Additionally, Min Li [26] has introduced a nonlinear CG algorithm that generates a search di-
rection akin to the memoryless BFGS quasi-Newton method. Notably, this search direction also
meets the descent condition and under the framework of a strongWolfe line search, global conver-
gence has been established for both strongly convex and nonconvex functions. Abubakar [1] have
presented a CG hybrid three-term algorithm wherein the search direction is determined using
the limited memory BFGS method. This method manages to satisfy both the criteria of sufficient
descent and trust region. It has been proven to achieve global convergence under specific con-
ditions and has demonstrated efficiency when compared to some previously proposed methods.
In addition, Kumam [25] and Deepho [15] also have introduced modifications to the CG hybrid
three-term approaches, involving combinations of HS and LS as well as CD and DY provided
a scaled preconditioner to the hybrid parameters. These modifications leverage existing conju-
gate gradient parameters, yielding positive results in solving a variety of test problems for both
approaches. The similar concept was implemented in [31] and [2] with various combinations
between conjugate parameters.

Inspires from the concepts elucidated in [1, 15, 25], we introduced a new CG hybrid three-
term approach designed for addressing the problem denoted as (1). Referred to as the Three-
Term LS-CD (TTLC) method, new approach amalgamates the three-term LS and CD directions.
Furthermore, the direction closely mirrors that of the memoryless BFGS quasi-Newton method
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and adheres to trust region principles. We establish the global convergence of this method under
bothWolfe line search conditions. The unique advantage and originality of our proposed method
lie in its ability to encompass the favorable properties exhibited by both LS and CD directions.
The significant contributions made by Andrei and Babaie-Kafaki in the realm of hybridization
through convex combinations and Djordjevic motivated us to extend their approaches to access
and combine the strength of the LS and CD CG update parameters. This paper is managed as
follows. Section 2 presents the new proposedmethod. Convergence analyses are shown in Section
3. Numerical test results are reported in Section 4. Finally, conclusions are made in Section 5.

2 Algorithm and Theoretical Results

In this section, we commence by outlining our formulation, followed by the presentation of our
proposed algorithm. In a prior study by Kumam [25], they introduced a CG hybrid three-term
method denoted as HTTHSLS, which incorporates the following search direction,

dHTTHSLS
k = −gk +

(
gTk yk−1

vk
− ∥yk−1∥2gTk dk−1

v2k

)
dk−1 + tk

gTk dk−1

wk
yk−1, k ≥ 1, (10)

where,

vk = max
(
µ∥dk−1∥∥yk−1∥,−dTk−1gk−1, d

T
k−1yk−1

)
, µ > 1, 0 ≤ tk ≤ tk < 1.

Likewise, Deepho [15] introduced a CG hybrid three-term algorithm denoted as TTCDDY, featur-
ing a search direction with the following structure,

dTTCDDY
k = −gk +

(
gTk gk
wk

− ∥gk∥2gTk dk−1

w2
k

)
dk−1 − tk

gTk dk−1

wk
gk, k ≥ 1, (11)

where,

wk = max
(
µ∥dk−1∥∥gk∥,−dTk−1gk−1, d

T
k−1yk−1

)
, µ > 1, 0 ≤ tk ≤ tk < 1.

Both theHTTHSLS andTTCDDYmethods are in compliancewith the sufficient descent conditions
and have been proved to globally converge under specific assumptions. Numerical results indicate
that these hybrid approaches surpass their predecessors in terms of performance. Inspired by the
HTTHSLS and TTCDDY methods, we introduce an innovative three-term hybrid CG algorithm
that incorporates the LBFGS Quasi-Newton algorithm, integrating spectral standardization tech-
niques introduced by Wang [39]. Following this, Subsequently, we will revisit the memoryless
BFGS method proposed by Shanno [38] and Nocedal [33], wherein the search direction can be
expressed as follows,

dBFGS
k = −

(
I −

sTk−1yk−1

sTk−1yk−1
−

yTk−1sk−1

sTk−1yk−1
+

sk−1y
T
k−1yk−1sk−1

sTk−1yk−1
+

sk−1s
T
k−1

sTk−1yk−1

)
gk,

The equation sk−1 = xk − xk−1 = αk−1dk−1 holds, where I represents the identity matrix. By
simplifying the dBFGS

k , it can be expressed as,

dBFGS
k = −gk +

(
gTk yk−1

dTk−1yk−1
− ∥yk−1∥2gTk dk−1

(dTk−1yk−1)2

)
dk−1 +

gTk dk−1

dTk−1yk−1
(yk−1 − sk−1), k ≥ 1. (12)
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By revisiting the proposed three-term LS and CD CG method by Kumam [25] and Deepho [15]
respectively, which can be defined as,

dTLSk = −gk +

(
gTk yk−1

−gTk−1dk−1
− ∥yk−1∥2gTk dk−1

(−gTk−1dk−1)2

)
dk−1 + tk

gTk dk−1

−gTk−1dk−1
yk−1, (13)

dTCDk = −gk +

(
gTk gk

−gTk−1dk−1
− ∥gk∥2gTk dk−1

(−gTk−1dk−1)2

)
dk−1 − tk

gTk dk−1

−gTk−1dk−1
gk. (14)

We were inspired by the idea of spectral approach introduced by Wang [39] in establishing a
standardization for both parameters. This modification involves replacing the terms associated
with ∥gk∥2, ∥sk−1∥2, and ∥yk−1∥2 to enable the selection of appropriate values for the conjugate
parameter and search direction,

ωk = max
{
min{∥gk∥2, ∥sk−1∥2}, ∥yk−1∥2

}
, (15)

where,

uk =

{
yk−1 if ωk = ∥yk−1∥2,
gk otherwise. (16)

Note that, the search direction dTTLCk = dTLSk as if uk = yk−1, otherwise dTTLCk = dTCDk . Since the
standardization of both search directions in equations (13) and (14) using equations (15) and (16)
will be similar to the search direction of TTLC, the standardized search direction can be defined
as follows,

dTTLCk = −gk +

(
gTk uk

−gTk−1dk−1
− ∥uk∥2gTk dk−1

(−gTk−1dk−1)2

)
dk−1 + tk

gTk dk−1

−gTk−1dk−1
uk. (17)

To solve the problem of finding the univariate minimum, it becomes necessary to determine the
parameter tk,

min
t∈R

∥(yk−1 − sk−1)− tuk∥2 . (18)

Let Ak = (yk−1 − sk−1)− tuk, then

AkA
T
k =

[
(yk−1 − sk−1)− tuk

][
(yk−1 − sk−1)− tuk

]T
= t2uku

T
k − t

[
uT
k (yk−1 − sk−1) + (yk−1 − sk−1)

Tuk

]
+ (yk−1 − sk−1)(yk−1 − sk−1)

T .

Let Bk = yk−1 − sk−1, then

AkA
T
k = t2uku

T
k − t(uT

kBk +BT
k uk) +BkB

T
k

tr(AkA
T
k ) = t2∥uk∥2 − t

(
tr(uT

kBk) + tr(BT
k uk)

)
+ ∥Bk∥2

= t2∥uk∥2 − 2tuT
kBk + ∥Bk∥2.

By taking the derivative of the previous expression with respect to tk and equating it to zero, we
derive the following result,

2t∥uk∥2 − 2uT
kBk = 0.
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This yields,

t =
uT
k (yk−1 − sk−1)

∥uk∥2
. (19)

Therefore, we choose tk to be

tk = min
{
t̄,max{0, t}

}
, (20)

where 0 ≤ tk ≤ t̄ < 1.

In accordance with the search direction stated in equations (17), we introduce a novel search
direction for the CG hybrid three-term method which as follows,

d0 = −g0, dTTLCk = −gk + βTTLC
k dk−1 + γTTLC

k uk, k ≥ 1, (21)

where
βTTLC
k =

gTk uk

−gTk−1dk−1
− ∥uk∥2gTk dk−1

(−gTk−1dk−1)2
, γTTLC

k = tk
gTk dk−1

−gTk−1dk−1
. (22)

Next, we describe algorithm of the proposed method.

Algorithm 2.1 Hybrid Three-Term LS-CD (TTLC)
Step 0: Choose an initial point x0 ∈ R

n, ϵ > 0 0 < η < ρ < 1, t̄ ∈ (0, 1). Set k = 0 and d0 = −g0.
Step 1: If ∥gk∥ ≤ ϵ = 10−6, stop; else, go to Step 2.
Step 2: Compute the standardization parameter uk using (15) and (16).
Step 3: Calculate the conjugate gradient parameter βk and γk using (22).
Step 4: Calculate the search direction dk using (21)
Step 5: Compute the step length αk using (4) and (5).
Step 6: Determine the next point xk+1 = xk + αkdk and compute g(xk+1), sk−1 and yk−1.
Step 8: Set k = k + 1 and go to Step 1.

3 Convergence Analysis

In this section, we will establish the global convergence analysis of the TTLCmethod based on
the subsequent assumptions
Assumption 1. The setH = {x ∈ R

n : f(x) ≤ f(x0)}, is bounded, with a starting point, x0.

Assumption 2. Suppose there exists a neighborhoodH of J where the gradient of f is Lipschitz continuous
and continuously differentiable. In this neighborhood, we can find L > 0 such that for all x,

∥g(x)− g(j)∥2 ≤ L∥x− j∥, j ∈ J.

Assuming Assumptions 1 and 2 hold, we can conclude that there exist positive constants A1 and
A2 for all x ∈ J , such that,

∥x∥ ≤ A1, ∥g(x)∥ ≤ A2.
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Additionally, the sequence of function values {f(xk)} decreases as long as the sequence {xk} be-
longing to J is decreasing. Therefore, assuming the objective function has a lower bound and that
Assumptions 1 and 2 are satisfied.

Following that, we outline the sufficient descent condition for the TTLC method.

Lemma 3.1. The search direction dk in (21) requires to satisfy (6) with c =
(
1− 1

4
(1 + t̄)

2

)
.

Proof. By multiplying both sides of (21) with gTk , we obtain

gTk dk = −∥gk∥2 +
gTk uk

−gTk−1dk−1
gTk dk−1 − ∥uk∥2

(−gTk−1dk−1)2
(gTk dk−1)

2 + tk
gTk uk

−gTk−1dk−1
gTk dk−1

= −∥gk∥2 + (1 + tk)
gTk uk

−gTk−1dk−1
gTk dk−1 −

∥uk∥2

(−gTk−1dk−1)2
(gTk dk−1)

2.

(23)

We derive ak and bk by applying the inequality aTk bk ≤ 1

2

(
∥ak∥2 + ∥bk∥2

),
(1 + tk)

gTk uk

−gTk−1dk−1
gTk dk−1 ≤ 1

4
(1 + tk)

2∥gk∥2 +
∥uk∥2

(−gTk−1dk−1)2
(gTk dk−1)

2. (24)

Substitute (24) into (23), we obtain

gTk dk ≤ −∥gk∥2 +
1

4
(1 + tk)

2∥gk∥2 +
∥uk∥2

(−gTk−1dk−1)2
(gTk dk−1)

2 − ∥uk∥2

(−gTk−1dk−1)2
(gTk dk−1)

2

= −∥gk∥2 +
1

4
(1 + tk)

2∥gk∥2

≤ −
(
1− 1

4
(1 + t̄)2

)
∥gk∥2.

The proof is completed.
Remark 3.1. Lemma 3.1 shows that the TTLC method always satisfies the sufficient descent condition
without requiring a line search.

Dai and Yuan [14] showed that all conjugate gradient method under Wolfe line search holds.
Theorem 3.1. [14] Given that Assumptions 1 and 2 are satisfied, and provided that conditions (4) and
(5) are met, if

∞∑
k=0

1

∥dk∥2
= +∞.

Then,

lim
k→∞

inf ∥gk∥ = 0. (25)

Proof. By contradiction, assume that equation (25) is not met. In this case, there exists a positive
scalar ξ such that,

∥gk∥ ≥ ξ, ∀k > 0. (26)
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Lemma 3.2. If {dk} is defined by (21), there exists λ1 > 0 such that ∥dk∥ ≤ ∥gk∥λ1.

Recalling the dTTLCk from (22) for uk = yk−1 when ωk = ∥yk−1∥2,∥∥dTTLCk

∥∥ ≤
∥∥−gk + βTTLC

k dk−1 + γTTLC
k yk−1

∥∥
≤ ∥ − gk∥+ |βTTLC

k |∥dk−1∥+ |γTTLC
k |∥yk−1∥

= ∥gk∥+

∣∣∣∣∣ gTk yk−1

−gTk−1dk−1
− ∥yk−1∥2gTk dk−1

(−gTk−1dk−1)2

∣∣∣∣∣ ∥dk−1∥+ tk

∣∣∣∣∣ gTk dk−1

−gTk−1dk−1

∣∣∣∣∣ ∥yk−1∥

≤ ∥gk∥+
(

∥gk∥∥yk−1∥
∥gk−1∥∥dk−1∥

+
∥yk−1∥2∥gk∥∥dk−1∥
(∥gk−1∥∥dk−1∥)2

)
∥dk−1∥+ tk

(
∥gk∥∥dk−1∥

∥gk−1∥∥dk−1∥

)
∥yk−1∥

≤ ∥gk∥+
(
αk−1∥gk∥∥dk−1∥
µαk−1∥dk−1∥2

+
α2
k−1∥gk∥∥dk−1∥3

µ2α2
k−1∥dk−1∥4

)
∥dk−1∥

+ tk

(
∥gk∥∥dk−1∥

µαk−1∥dk−1∥2

)
αk−1∥dk−1∥

= ∥gk∥+
(
∥gk∥

1

µ
+ ∥gk∥

1

µ2

)
+ ∥gk∥tk

(
1

µ

)
≤ ∥gk∥

(
1 +

1

µ
+

1

µ2
+

t̄

µ

)
.

In which λ1 = ∥gk∥
(
1 +

1

µ
+

1

µ2
+

t̄

µ

)
, where ∥dk∥ ≤ ∥gk∥λ1.

The same proof technique is applied in another scenario where uk = gk holds true, provided that
ωk ̸= ∥yk−1∥2. Consequently, the sequence ∥dk∥ produced by the TTLC method possesses an
upper bound.

Next, we introduce the renowned Zoutendijk condition [42], a crucial element for the global
convergence analysis of the TTLC method.
Lemma 3.3. [42] Suppose that Assumptions 1 and 2 are satisfied, and the sequence {xk} is generated by
(2), dk satisfies the sufficient descent condition and αk is computed by the standard Wolfe line search, then

∞∑
k=0

(
gTk dk

)2
∥dk∥2

< +∞. (27)

Based on Lemma 3.1 and condition (4), for αk > 0, η > 0, 0 ≤ t̄ ≤ 1, we obtain
f(xk + αkdk) ≤ f(xk) + ηαkg

T
k dk

≤ f(xk)− ηαk

(
1− 1

4
(1 + t̄)2

)
∥gk∥2

≤ f(xk).

By elaborating on the above outcome and contemplating Assumption 1, we have
f(xk+1) ≤ f(xk) + ηαkg

T
k dk ≤ f(xk) ≤ f(xk−1) ≤ . . . ≤ f(x0) < +∞.

Incorporating condition (5) by adding −gTk dk gives,
g(xk + αkdk)

T dk − gTk dk ≥ ρgTk dk − gTk dk = − (1− ρ) gTk dk.
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Using Lemma 3.1, along with condition (5) and Assumption 2, it deduces as follows,

−(1− ρ)gTk dk ≤ (gk+1 − gk)
T dk ≤ ∥gk+1 − gk∥∥dk∥ ≤ αkL∥dk∥2. (28)

By multiplying above inequality with −ηgTk dk and combine with (4), we obtain

η (1− ρ)

L

(
gTk dk

)2
∥dk∥2

≤ −ηαkg
T
k dk ≤ f(xk)− f(xk+1),

and

η (1− ρ)

L

∞∑
k=0

(
gTk dk

)2
∥dk∥2

≤ (f(x0)− f(x1)) + (f(x1)− f(x2)) + . . . ≤ f(x0) < +∞.

As previously mentioned, the sequence f(xk) is limited within certain bounds. This implies that,
∞∑
k=0

(
gTk dk

)2
∥dk∥2

< +∞.

Inequality (26) in conjunction with (6) leads to the conclusion that,

gTk dk ≤ −
(
1− 1

4
(1 + t̄)2

)
∥gk∥2 ≤ −

(
1− 1

4
(1 + t̄)2

)
∥ξ∥2. (29)

By squaring both sides and dividing equation (29) by ∥dk∥2, where ∥dk∥ ≠ 0, we obtain
∞∑
k=0

(
gTk dk

)2
∥dk∥2

≥
(
1− 1

4
(1 + t̄)2

)2 ∞∑
k=0

∥ξ∥4

∥dk∥2
= +∞. (30)

As it conflicts with the Zoutendijk condition (27), the theorem is validated.

4 Numerical Experiments

In this section, we conduct an analysis of the performance of our novel TTLC CG algorithm
on 150 test functions sourced from Andrei [8], Moré [32], and Jamil [24]. The newly proposed
method, denoted as TTLC,will be compared against several othermethods, includingNHS+ [26],
HTTHSLS [25], TTCDDY [15], HTT [1], TTPRLS [2], HTHP [31] and TTRMIL [28]. All the com-
parative methods were implemented and executed using Matlab R2021B with Intel® Core™ i5-
9300H processor, 16 GB RAM, and 64-bit Windows 11 on a personal laptop. The comparisons are
made based on reductions in terms of the number of iterations and central processing unit times
that denoted as NOI and CPU time, respectively. These for each test functions cover a wide range
of dimensions, spanning from 2 to 1,000,000 as detailed in Table 1.

Table 1: List of test functions and their dimensions.

No. Functions Dimensions Initial Points
1 Extended White & Holst 50,000 (1.1, . . . , 1.1)
2 Extended White & Holst 100,000 (1.1, . . . , 1.1)
3 Extended White & Holst 1,000,000 (1.1, . . . , 1.1)

Continued on next page
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Continued from previous page
No. Functions Dimensions Initial Points
4 Extended Rosenbrock 50,000 (0.1, . . . , 0.1)
5 Extended Rosenbrock 100,000 (0.1, . . . , 0.1)
6 Extended Rosenbrock 1,000,000 (0.1, . . . , 0.1)
7 Extended Freudenstein and Roth 1,000 (-2, . . . , -2)
8 Extended Freudenstein and Roth 50,000 (-2, . . . , -2)
9 Extended Freudenstein and Roth 100,000 (-2, . . . , -2)
10 Extended Beale 1,000 (1, . . . , 1)
11 Extended Beale 50,000 (1, . . . , 1)
12 Extended Beale 100,000 (1, . . . , 1)
13 Raydan 1 10 (1.1, . . . , 1.1)
14 Raydan 1 50 (1.1, . . . , 1.1)
15 Raydan 1 100 (1.1, . . . , 1.1)
16 Extended Tridiagonal 1 10 (-2.1, . . . , -2.1)
17 Extended Tridiagonal 1 50 (-2.1, . . . , -2.1)
18 Extended Tridiagonal 1 10 (-2.1, . . . , -2.1)
19 Diagonal 4 1,000 (0.1, . . . , 0.1)
20 Diagonal 4 5,000 (0.1, . . . , 0.1)
21 Diagonal 4 50,000 (0.1, . . . , 0.1)
22 Extended Himmelblau 1,000 (5, . . . , 5)
23 Extended Himmelblau 50,000 (5, . . . , 5)
24 Extended Himmelblau 100,000 (5, . . . , 5)
25 FLETCHCR 100 (-5, . . . , -5)
26 FLETCHCR 5,000 (-5, . . . , -5)
27 FLETCHCR 50,000 (-5, . . . , -5)
28 Extended Powell 100 (8, . . . , 8)
29 Extended Powell 1,000 (8, . . . , 8)
30 NONSCOMP 2 (10, 10)
31 NONSCOMP 4 (10, . . . , 10)
32 NONSCOMP 10 (10, . . . , 10)
33 Extended DENSCHNB 1,000 (1, . . . , 1)
34 Extended DENSCHNB 50,000 (1, . . . , 1)
35 Extended DENSCHNB 100,000 (1, . . . , 1)
36 Extended Penalty Function U52 5 (5, . . . , 5)
37 Extended Penalty Function U52 10 (5, . . . , 5)
38 Extended Penalty Function U52 50 (5, . . . , 5)
39 Hager 5 (1, . . . , 1)
40 Hager 10 (1, . . . , 1)
41 Hager 50 (1, . . . , 1)
42 Booth 2 (5, 5)
43 Booth 2 (10, 10)
44 Sum Squares 1,000 (0.1, . . . , 0.1)
45 Sum Squares 10,000 (0.1, . . . , 0.1)
46 Sum Squares 100,000 (0.1, . . . , 0.1)
47 Zirilli or Aluffie-Petini’s 2 (1, 1)
48 Zirilli or Aluffie-Petini’s 2 (-1, -1)
49 Leon 2 (-2, -2)
50 Leon 2 (-2, -2)
51 Cube 2 (4, 4)
52 Cube 50 (4, . . . , 4)

Continued on next page

177



M. A. I. Ishak et al. Malaysian J. Math. Sci. 18(1): 167–184(2024) 167 - 184

Continued from previous page
No. Functions Dimensions Initial Points
53 Cube 100 (4, . . . , 4)
54 Extended Maratos 10 (-0.5, . . . , -0.5)
55 Extended Maratos 50 (-0.5, . . . , -0.5)
56 Extended Maratos 100 (-0.5, . . . , -0.5)
57 Generalized Tridiagonal 1 5 (15, . . . , 15)
58 Generalized Tridiagonal 1 10 (15, . . . , 15)
59 Generalized Tridiagonal 1 100 (15, . . . , 15)
60 Trecanni 2 (-1, 0.5)
61 Trecanni 2 (-5, 10)
62 Zettl 2 (0, 0)
63 Zettl 2 (10, 10)
64 Shallow 1,000 (1.001, . . . , 1.001)
65 Shallow 50,000 (1.001, . . . , 1.001)
66 Shallow 100,000 (1.001, . . . , 1.001)
67 Generalized Quartic 100 (1.001, . . . , 1.001)
68 Generalized Quartic 5,000 (1.001, . . . , 1.001)
69 Generalized Quartic 10,000 (1.001, . . . , 1.001)
70 Quadratic QF2 10 (0.5, . . . , 0.5)
71 Quadratic QF2 100 (0.5, . . . , 0.5)
72 Quadratic QF2 1,000 (0.5, . . . , 0.5)
73 Six Hump Camel 2 (-1.5, -2)
74 Six Hump Camel 2 (-5, -10)
75 Three Hump Camel 2 (-1.5, -2)
76 Three Hump Camel 2 (-5, -10)
77 Dixon and Price 1,000 (0.5, . . . , 0.5)
78 Dixon and Price 10,000 (0.5, . . . , 0.5)
79 Dixon and Price 100,000 (0.5, . . . , 0.5)
80 POWER 10 (3, . . . , 3)
81 POWER 50 (3, . . . , 3)
82 POWER 500 (3, . . . , 3)
83 Quadratic QF1 100 (1, . . . , 1)
84 Quadratic QF1 1,000 (1, . . . , 1)
85 Quadratic QF1 10,000 (1, . . . , 1)
86 Generalized Tridiagonal 2 10 (4, . . . , 4)
87 Generalized Tridiagonal 2 50 (4, . . . , 4)
88 Generalized Tridiagonal 2 500 (4, . . . , 4)
89 Extended Quadratic Penalty QP3 5 (1, . . . , 1)
90 Extended Quadratic Penalty QP3 10 (1, . . . , 1)
91 Extended Quadratic Penalty QP3 100 (1, . . . , 1)
92 Extended Quadratic Penalty QP2 5 (1, . . . , 1)
93 Extended Quadratic Penalty QP2 50 (1, . . . , 1)
94 Extended Quadratic Penalty QP2 500 (1, . . . , 1)
95 Extended Quadratic Penalty QP1 5 (2, . . . , 2)
96 Extended Quadratic Penalty QP1 10 (2, . . . , 2)
97 Extended Quadratic Penalty QP1 100 (2, . . . , 2)
98 QUARTICM 1,000 (4, . . . , 4)
99 QUARTICM 50,000 (4, . . . , 4)
100 QUARTICM 100,000 (4, . . . , 4)
101 Sphere 1,000 (1, . . . , 1)

Continued on next page
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Continued from previous page
No. Functions Dimensions Initial Points
102 Sphere 10,000 (1, . . . , 1)
103 Sphere 100,000 (1, . . . , 1)
104 Quartic 4 (0.5, . . . , 0.5)
105 Quartic 4 (0.5, . . . , 0.5)
106 Matyas 2 (1, 1)
107 Matyas 2 (20, 20)
108 Diagonal 2 2 (30, 30)
109 Diagonal 2 5 (30, . . . , 30)
110 Diagonal 2 10 (30, . . . , 30)
111 Colville 4 (1.2, . . . , 1.2)
112 Colville 4 (-0.5, . . . , -0.5)
113 Price Function 4 2 (-2, 3)
114 Price Function 4 2 (3, -2)
115 Perturbed Quadratic 2 (1, 1)
116 Perturbed Quadratic 2 (5, 5)
117 Perturbed Quadratic 2 (10, 10)
118 Extended Hiebert 1,000 (5, . . . , 5)
119 Extended Hiebert 10,000 (5, . . . , 5)
120 Extended Hiebert 100,000 (5, . . . , 5)
121 Linear Perturbed 100 (0.1, . . . , 0.1)
122 Linear Perturbed 5,000 (0.1, . . . , 0.1)
123 Linear Perturbed 50,000 (0.1, . . . , 0.1)
124 Extended Block-Diagonal BD1 100 (1.02, . . . , 1.02)
125 Extended Block-Diagonal BD1 5,000 (1.02, . . . , 1.02)
126 Extended Block-Diagonal BD1 50,000 (1.02, . . . , 1.02)
127 DENSCHNA 1,000 (-1, . . . , -1)
128 DENSCHNA 10,000 (-1, . . . , -1)
129 DENSCHNA 100,000 (-1, . . . , -1)
130 DENSCHNB 100 (10, . . . , 10)
131 DENSCHNB 5,000 (10, . . . , 10)
132 DENSCHNB 50,000 (10, . . . , 10)
133 DENSCHNC 100 (1.5, . . . , 1.5)
134 DENSCHNC 5,000 (1.5, . . . , 1.5)
135 DENSCHNC 50,000 (1.5, . . . , 1.5)
136 DENSCHNF 100 (50, . . . , 50)
137 DENSCHNF 5,000 (50, . . . , 50)
138 DENSCHNF 50,000 (50, . . . , 50)
139 HIMMELBG 10 (1.5, . . . , 1.5)
140 HIMMELBG 50 (1.5, . . . , 1.5)
141 HIMMELBG 100 (1.5, . . . , 1.5)
142 HIMMELBH 10 (0.8, . . . , 0.8)
143 HIMMELBH 50 (0.8, . . . , 0.8)
144 HIMMELBH 100 (0.8, . . . , 0.8)
145 DIAG-AUP1 10 (-1, . . . , -1)
146 DIAG-AUP1 1,000 (-1, . . . , -1)
147 DIAG-AUP1 10,000 (-1, . . . , -1)
148 Strait 1,000 (2, . . . , 2)
149 Strait 100,000 (2, . . . , 2)
150 Strait 1,000,000 (2, . . . , 2)
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The numerical comparisons were conducted objectively using the standard Wolfe line search,
where the parameter values for our proposed method are η = 0.0001, ρ = 0.09, and t̄ = 0.3, while
the parameter values used for NHS+, HTTHSLS, TTCDDY, HTT, TTPRLS, HTHP and TTRMIL
were kept consistent as specified in their respective studies. When ∥gk∥ ≤ 10−6, all methods were
terminated and would fail if the optimal value was not reached or the number of iterations ex-
ceeded 10,000. For the step length, αk will be chosen when the search number of the standard
Wolfe line search is more than 6. The overall numerical results for the all methods including the
number of iterations and central processing unit times are provided at OVERALL NR DATA. Fur-
ther assessment and visual representation of the results were carried out using the performance
profile tool developed by Dolan andMor’e [18], as depicted in Figure 1 and Figure 2, respectively.

Based on the numerical findings and the visual representations in Figure 1 and Figure 2, the
proposed TTLC approach demonstrates several notable advantages. Specifically, it exhibits a high
level of effectiveness in addressing 57% of the tested problems, showcasing superior efficiency
compared to alternative methodologies under consideration. Moreover, the numerical perfor-
mance of the TTLCmethod maintains a remarkable degree of stability, primarily attributed to the
well-considered parameter choices outlined in equations (15), (16), and (22). When examining
the numerical results from the two comparative analyses and their respective performance pro-
files, all five methods, in this context, have proven to be practically efficacious, particularly within
the framework of these specific sets of numerical experiments. The efficacy of each approach is
discernible by referencing Figure 1 and Figure 2, wherein the NHS+method successfully resolves
91% of the problems, while HTTHSLS, TTCDDY, HTT, TTPRLS, HTHP and TTRMIL achieve 97%,
92%, 89%, 95%, 91% and 84%, respectively and TTLC attains a perfect 100%. From this stand-
point, the TTLS method emerges as the most effective among the compared methodologies. Fur-
thermore, it is worth highlighting that the TTLC method exhibits robust performance, especially
when confronted with challenging problem instances.

Figure 1: Performance profiles on NOI.
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Figure 2: Performance profiles on CPU time.

5 Conclusions

In this paper, a new hybrid three-term CG algorithm is developed by combining the classical
three-term LS and CD CG method by using standardization parameter. The standardization pa-
rameter is independent for any line searches. Regardless of whether a line search is employed, the
search direction of the algorithm exhibits a satisfactory descent behavior and remains within de-
fined bounds. Furthermore, the determination of step lengths is achieved through standardWolfe
line search. Demonstrating its effectiveness under certain assumptions, the global convergence is
rigorously established and it owns the sufficient descent property independent of any line search
technique. Based on the empirical evidence garnered from experimental numerical results which
includes 150 test functionswith various dimensions, it becomes evident that this innovative hybrid
approach surpasses other existing methods in terms of both efficiency and robustness which has
been visualized in the performance profiles. Therefore, the proposedmethod offersmore effective
and stable convergence across most of the problem scenarios examined.
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